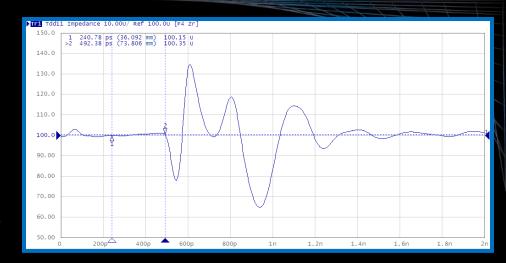


SPACE-GRADE INTERCONNECT SOLUTIONS

Matt Shingleton - Product Manager, High Speed and Interposers

Glenair interconnect solutions for space – focus session, High Speed GMMD interconnect


The ever growing demands on industry for faster communication speeds has been a challenge for all over the years.

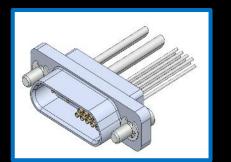
 Today's presentation will focus of the Glenair GMMD high speed Micro-D connector portfolio.

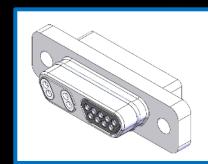
Standard micro-D

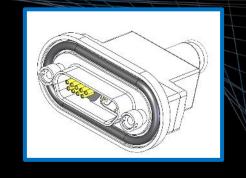
- Micro-D format good for low data rate (<1Gb/s) but:</p>
 - Impedance too low for adjacent contacts
 - Poor shielding between contacts
 - Cross talk and impedance not considered on printed circuit board (PCB) and wire terminations

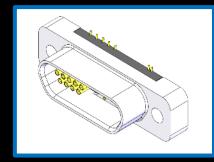
GMMD – Modular Micro-D

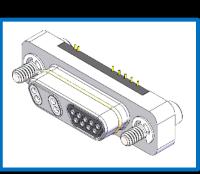
- High speed micro-D hybrid to offer for high data rate applications
 - 10Gb/s
 - Straight and 90°
 - PCB to cable, PCB-PCB, cable-cable
- Surface Mount Technology (SMT) tails
- Low cross talk
- Balanced impedance
- #24 discrete, #30 data contacts

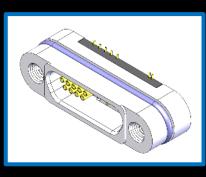

Plug connectors

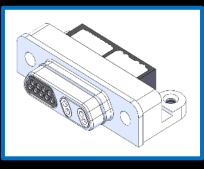

- Canted coil spring included on plug nose to ensure low resistance ground path from cable screen to box ground/PCB
- Glenair made cable assemblies ensure highest quality

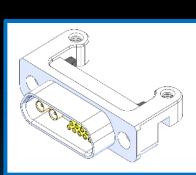


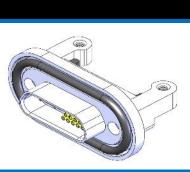


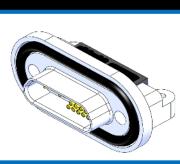

Shell types

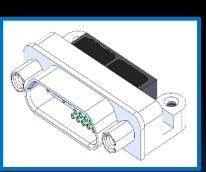


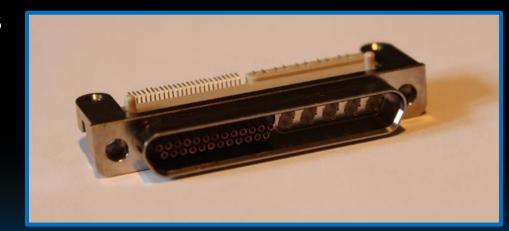












Variants possible

- Shell sizes from 9 to 67 to house any number of twinax pairs and low speed insulator modules
- 50 and 75Ω coax modules
- Standard micro-D backshells

Micro-D with coax

- As an addition to the GMMD range the coax contact is now included
- For RF up to ~30GHz
- Plug cable assemblies made by Glenair terminated to whatever contact needed at the other end, or a flying lead

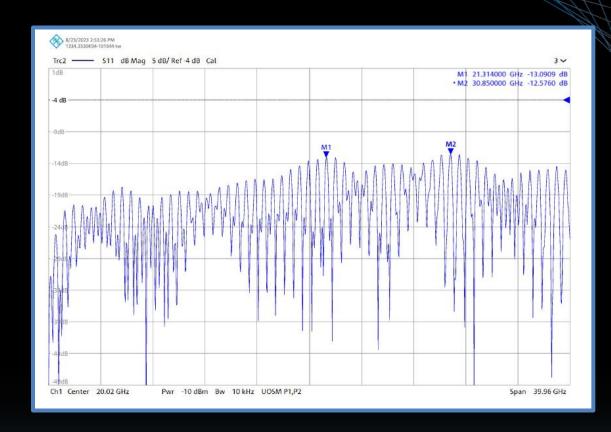


 Cabled assemblies available for RG405, RG178/9, semi rigid or flexible cable 047

Coax receptacle

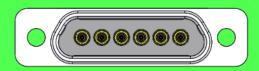
- Edge launched PCB SMT
- Arrangement tray to rear of receptacle ensures precise contact to pad alignment

Coax contact


- Centre conductor using a nano contact
- Shield outer 2mm OD
- Housed in an insulating bush to isolate the return path from shell ground
- Hybrids with discrete lines and twinax if required

Coax test data

047 flex cable,200mmterminated to2.92s both ends


GMMD horizontal and vertical coax

Board Space Comparison

GMMD-VR6C 6 x 2.92mm Vertical Compression Connectors 6 x SMPM Connectors

SavCons

- Available for all GMMD twinax and coax
- Maintains signal integrity, XT and RL

GMMD Summary

- Rugged, proven contact system (twist pin)
- Catalogue hardware
- Low cross talk, high bandwidth lines, 1,2,3,-16 of... up to 10Gb/s
- RF contacts for up to ~30GHz
- Straight and 90° receptacles

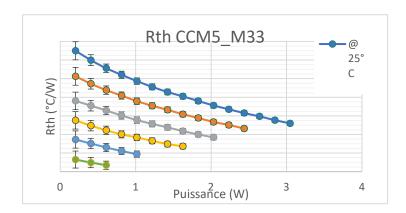
GMMD Summary

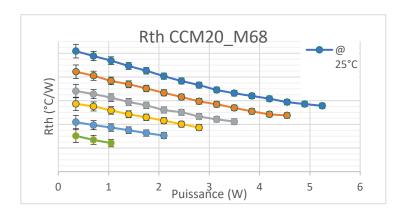
- SMT receptacles for simple PCB mounting and optimum high-speed performance
 - Materials used compliant with high temperature lead free soldering processes
- Nickel or gold-plated shells and backshells
- NASA and ESA screening possible
- All outgassing compliant construction

Bruno Cogitore ESA / SPCD 2024

16th october 2024

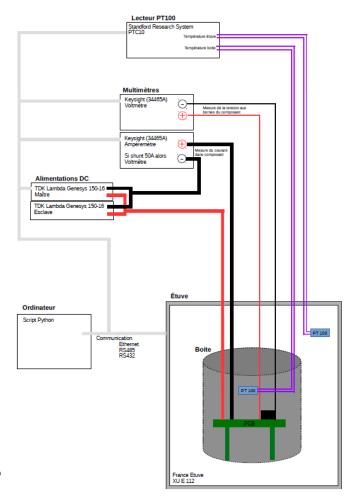
REMINDER


• In 2022, we characterized CCM and SESI thermal behavior Rth with a measurement bench


Bench based on a ventilated monitored oven

Component inside a box ensuring natural convection

Only DC copper losses


Results presented at SPCD 2022

Multiplication/Confirmation of results by characterizing typical cases Comparison of some results with finite element simulations

Complementary experimental characterisations 1/2

Definition of 8 typical or extreme cases

- 1 Industrial variability: comparing two copies of the same product
- 2 Component orientation : horizontal / vertical
- 3 Component in oil
- 4 Component on a heatsink
- 5 Component suspended in air
- 6 Black painted component
- 7 Component with cut pins
- 8 Composant insulated in rock wool

Measurements performed on 1 CCM20 and 1 SESI22

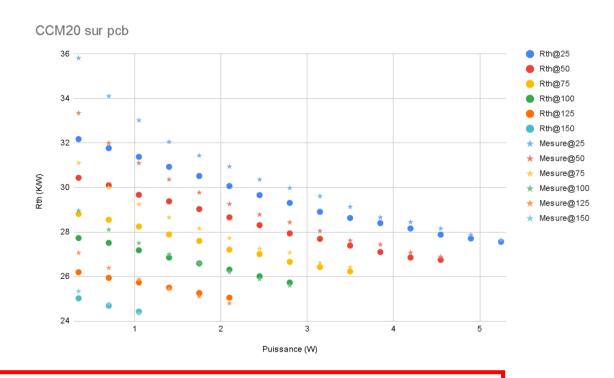
Nearly 1000 measurements carried out

One hundred were duplicates of previous characterizations

Complementary experimental characterisations 2/2

• Exemples of results for CCM20

Test configuration	Rth at 25°C and 1W (°C/W)
Isolated (in rock wool)	69,9
Pin cut	35,6
Suspended	33,1
Horizontal	31,7
Vertical	31,4
Black painted	30,9
On a heatsink	25,4
In oil	12,5

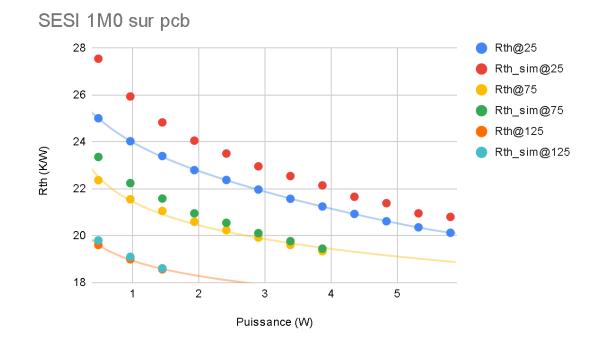

- → Validation of results with respect to thermal behavior and qualitative variations
- Parameters having a big influence on Rth
 - Number of pin connected
 - Diameters of wires weld to pins
 - Composition of support PCB: proportions of Epoxy and Copper
 - Component orientation if Planar (only SESI)

Comparison with finite element simulations

- Software used :
 - **CFD Acusolve / Optistruct / ElectroFlo with Simlab interface (ALTAIR)**
- Exemples of results for CCM20
 - Component on PCB
 - All pins connected on only one side (≠ drawing)
 - Air natural convection

→ If T \geq 75°C and P \geq 1W, difference between measurement and simulation < 4%

Comparison with finite element simulations


Exemples of results for SESI

Same situation as CCM20:

For T > 75°C and P > 1W

Diff between meas and simu < 5%

→ Validation of results

Conclusions

Thermal behavior models of our components are reliable

We know how to adapt them depending on the environment

Perspectives

We have some ideas to improve thermal behavior

Develop a model similar to transistors: 2 or 3 Rth between component and environment

Thank you for your attention No question, sorry

Bruno COGITORE

Magnetic Expert / Innovation • Exxelia Magnetics

Phone: +33 (0)4 51 62 13 99

Cell: +33 (0)6 99 36 16 47

Thank You!

Visit our website www.exxelia.com

SWATCH GROUP

Micro Crystal at a Glance

1978

Company creation

More than 40 years of expertise

Leader for miniature SMD Crystals, Oscillators and Real-Time Clock Modules

> 200 mio

Capacity in parts per year

> 400

Employees worldwide

Market Segments & Relative Turnover

INDUSTRIAL

Smart Grid, Metering, Factory and Process Automation, IIoT, Embedded Systems

30%

AUTOMOTIVE

EV charging, Infotainment, Control units, BMS, T-box

17%

MEDICAL

Glucose Meters, Defibrillators, Pacemakers, Neurostimulators, Insulin Pumps, Smart Implants

23%

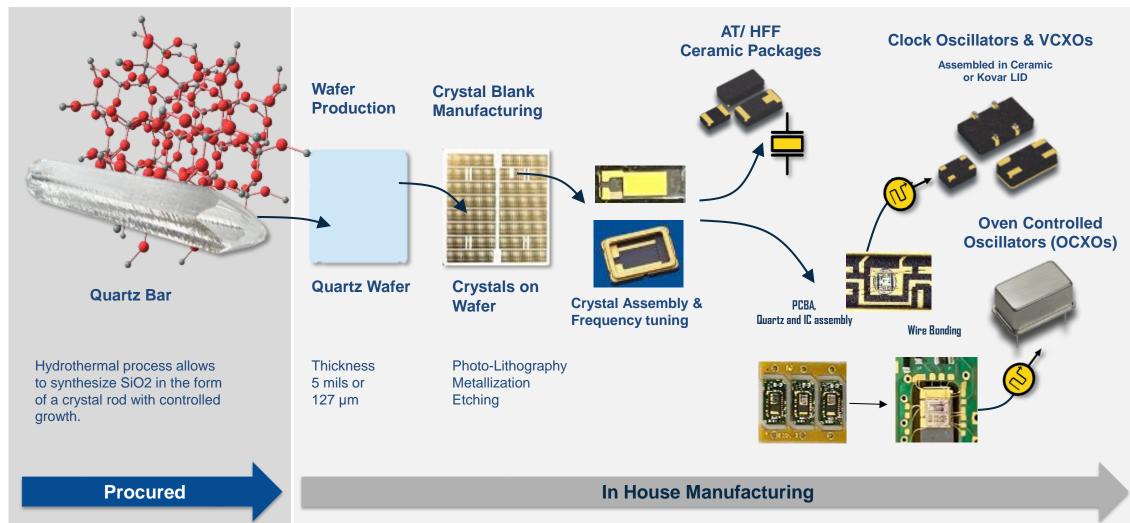
CONSUMER

Watches, Smart Home, IoT, Wearables, White Goods

18%

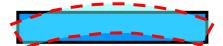
HIGH DEMANDING APPLICATIONS

Avionics, Satellite, Aerospace,
Down Hole Drilling



12%

Made in Switzerland



Oscillation modes of Quartz Crystal

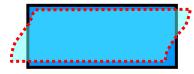
Tuning Fork

Flexure mode:

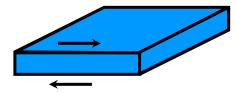
- < 200 kHz fundamental mode</p>
- 200 to 560 kHz overtone mode

Extensional mode:

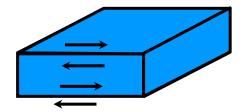
• 560 to 2100 kHz


Thickness Shear mode:

- 2 to 30 MHz fundamental mode
- 30 to 250 MHz high frequency fundamental mode / inverted mesa
- > 30 MHz as 3rd 5th 7th harmonics

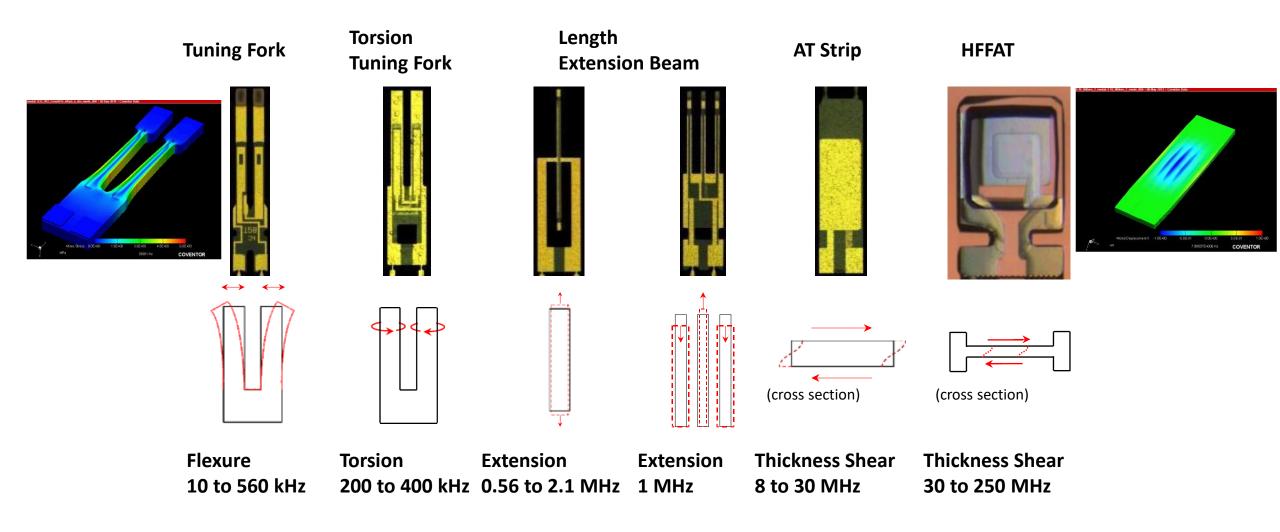

Flexure Mode

Extensional Mode



Thickness Shear Mode

Fundamental Mode Thickness Shear



Third Overtone
Thickness Shear

Made in Switzerland

kHz Tuning Fork Crystals and Oscillators

Low Power – High Stability – High Reliability

Wide range of load capacitance available, frequency tolerance down to ± 20 ppm

TF Watch Quartz Crystals

- 32.768 kHz
- Through Hole

The original application and design (for watches & consumer products) since 1978...

TF Crystals in SMD Metal Package

- 30 to 200 kHz
- Au Flashed Can

Low-cost alternative to ceramic package

TF Crystals in Ceramic Package

 Extended operating temperature range (-55°C to +125°C)

- Low ESR, Low Thickness
- Available in AEC-Q200 Version

Oscillators

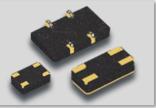
- Built-in crystal
- 32.768 and 100.000 kHz

- Ultra Low Power
- Miniature Package (C9 Series in 1610)

High Frequency Crystals & Oscillators

High Performance and High Reliability Applications

Operation at Temperature up to 210°C, Stability down to ± 0.025 ppm

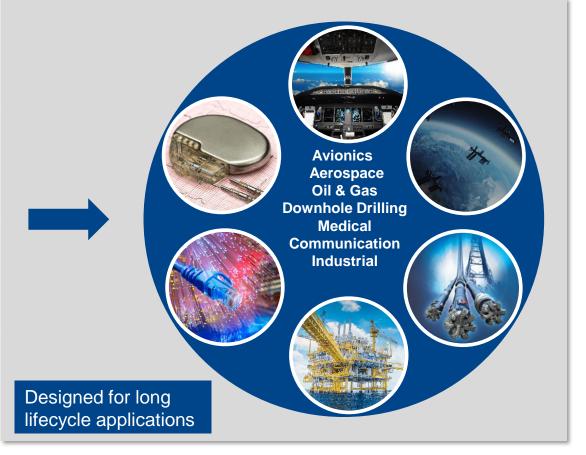

AT-HFF Crystals

• AT: 8 – 30 MHz HFF: 30 – 250 MHz

Clock Oscillators

• 10 kHz – 225 MHz

OCXOs


up to 120 MHz

VCXOs

• 5 MHz – 170 MHz

Secure fast lock nano D connectors and small, low cost, quick locking composite connector

Axon' – Marc AUVRAY

28 octobre 2024

AXON' Heritage

From Screwlock

MicroD

• Metallic:

ESCC 3401/029

MIL-DTL-83513

• Composite:

MIL-DTL-83513

NanoD

ESCC 3401/086 MIL-DTL-32139

FastLock

MicroD

Metallic :

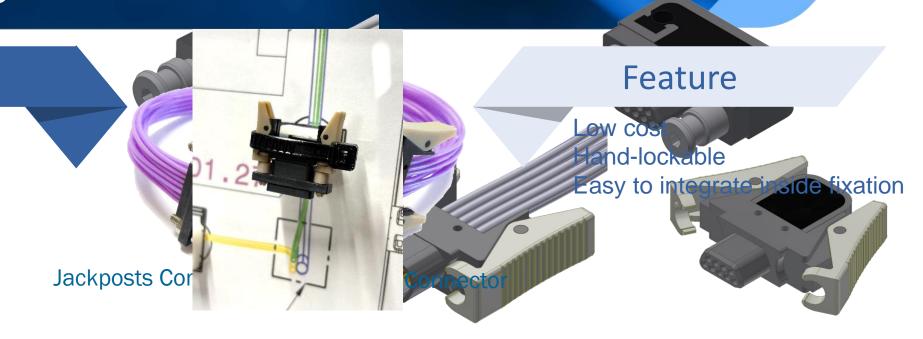
DClick ESCC 3401/091

• Composite:

NanoD

To

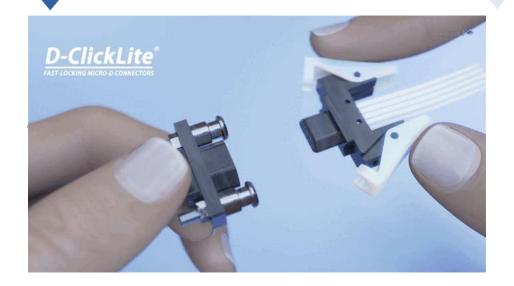
Save time
Avoid tooling



MicroD DClick Lite

Range

Composite shell
Size 9 ▶51 Ways
Jackpost & Clasps : S/P
Pigtail & PCB



MicroD DClick Lite

Range

Composite shell
Size 9 ▶51 Ways
Jackpost & Clasps : S/P
Pigtail & PCB

Feature

Low cost Hand-lockable Easy to integrate inside fixation

STEP 1

Align the connectors

STEP 2

Engage the connectors

STEP 3

Pinch on the clasps – it "clicks" and it's done!

SnapLite

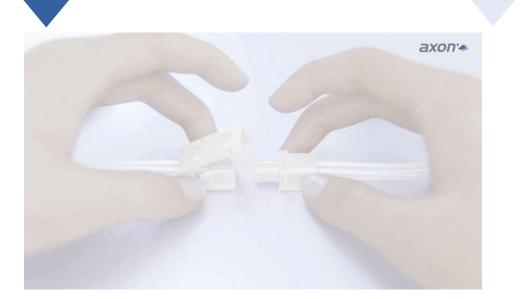
Range

Composite shell Size 4 Ways Clasp : S Pigtail & PCB

Feature

MicroD Contacts
Low cost
Hand-lockable
Easy to integrate inside bundle
or fixation

ESCC 3401 Detail specification


► ESA review

SnapLite

Range

Composite shell Size 4 Ways Clasp : S Pigtail & PCB

Feature

MicroD Contacts
Low cost
Hand-lockable
Easy to integrate inside bundle
or fixation
ESCC 3401 Detail specification

STEP 1

Align the connectors

STEP 2

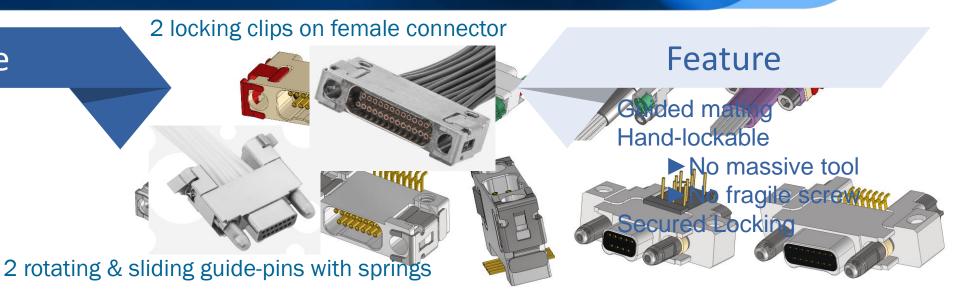
Engage the connectors

STEP 3

► ESA review

Pinch on the clasp – it "clicks" and it's done!

Nano-D fast lock


Range

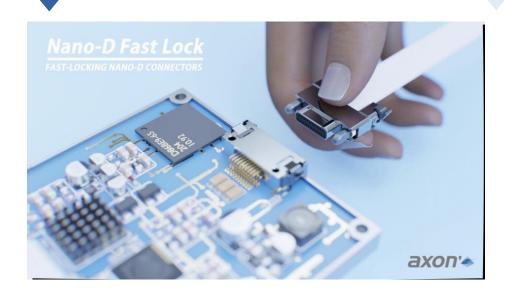
Size 9 ►51 Ways

Clip: S

Guide pins : P

Pigtail & PCB

Nano-D fast lock


Range

Size 9 ▶51 Ways

Clip: S

Guide pins: P

Pigtail & PCB

Feature

Guided mating Hand-lockable

- ► No massive tool
- ► No fragile screw Secured Locking

STEP 1

Approach the two connectors

STEP 2

Engage the connectors

STEP 3

Pushthætwoguide

Pims." and it's done!

Conclusion

From Screwlock

MicroD

Metallic :

ESCC 3401/029

MIL-DTL-83513

• Composite:

MIL-DTL-83513

NanoD

ESCC 3401/086 MIL-DTL-32139

FastLock

MicroD

Metallic :

DClick ESCC 3401/091

• Composite:

DclickLite & SnapLite

NanoD

Nano-D fast lock

To

Save time
Avoid tooling

Conclusion

From Screwlock

MicroD

Metallic :

ESCC 3401/029 MIL-DTL-83513

• Composite : MIL-DTL-83513

NanoD

ESCC 3401/086 MIL-DTL-32139

FastLock

MicroD

Metallic :


DClick ESCC 3401/091

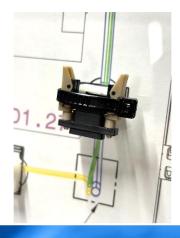
 Composite : DclickLite & SnapLite

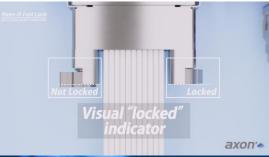
NanoD

Nano-D fast lock

To

Save time


Avoid tooling

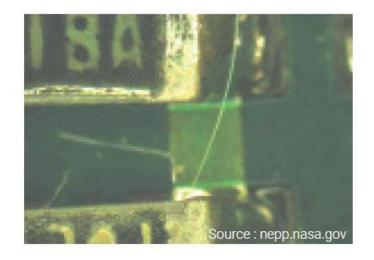

▶ Save space


Secure mating Secure locking

► Ease inspection of locking

Ease integration

Thank you for your Attention



High reliability assemblies and the threat of tin whiskers to passive components

Ensuring safety and performance in high-stress environments

Tin Whiskers

- The exact cause of tin whisker growth is still not fully understood.
- It is known that a whisker grows from its base and that the tin around the base does not thin as the whisker grows.
- It seems that the energy for growth comes from micro strains present in the tin or from externally applied pressure.
- Tin whiskers can easily short two connections damaging the chip and causing the PCB to fail.
- Failure is NOT an option in the high reliability sectors of space, avionics and defence.

Examples of satellite failures caused by tin whiskers

Туре	Satellite Name
Complete Loss	Galaxy VII, PanAmSat (2000)
Complete Loss	Solidaridad 1, SatMex (2000)
Complete Loss	Galaxy IIIR, PanAmSat (2006)

Туре	Satellite Name
Partial Failure	Cassini Spacecraft Plasma Spectrometer (2016)
Faulty System	Shuttle Electronic Systems

Tin Whisker Failures Beyond Space

- Northrop Grumman electronic systems failures
- Patriot & Phoenix Missiles
- F-15 Fighters
- Heart Pacemakers
- Multiple Automotive Instances

FOREWORD

Page 3 of 18

This standard was prepared to standardize the requirements for using robotic hot solder dip to replace the finish on certain electronic piece parts. The requirements within this standard were derived from existing industry standards and a collaboration of suppliers and customers.

The intent of this standard is for suppliers and customers to incorporate these requirements into their operations to provide a consistent and well-controlled process. This standard does not apply to original piece part manufacturers who build piece parts with a hot solder dip finish.

The Hot Solder Dip Task Group, under the direction of the Government Electronics and Information Association (GEIA), prepared this standard. This revision was prepared by the G-24 committee of SAE. All addenda of this standard are informative in nature.

INTRODUCTION

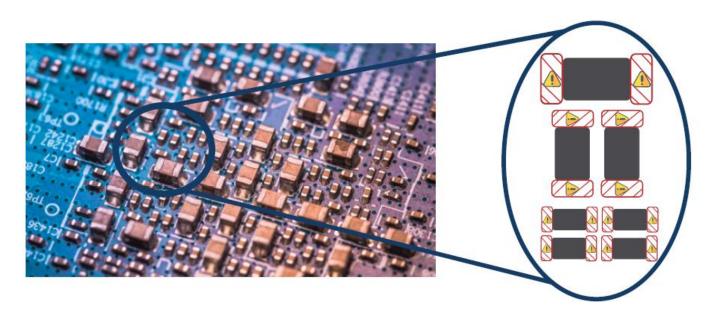
There are two major reasons to solder dip piece parts: solderability concerns and tip whisker mitigation. Solder dip for tin-whisker mitigation differs from solder dip for solderability in that for tin whisker mitigation the termination needs to be coated over its entire length, right up to the package surface. During solder dip, the piece part experiences temperature differences significantly greater than those present during typical board-level assembly. In addition, the fluxes used during the dipping process can become trapped in a minor delamination, like that commonly found in plastic piece parts, which can lead to reliability issues. To avoid these concerns, the solder dip process needs to be qualified and carefully controlled. To decrease the possibility of failure of the piece part after being solder dipped and to ensure a quality process is performed each time, requirements for performing robotic hot solder dipping are presented in this standard.

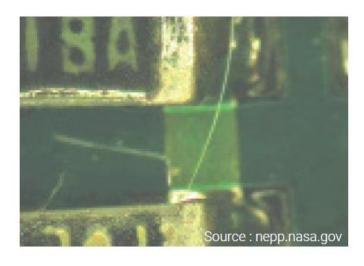

This standard was designed for the replacement of pure tin and Pb-free tin alloy finishes with SnPb finishes for subsequent assembly with SnPb solder. Aspects of this standard may be applicable to other finish changes. Replacement finishes other than SnPb should be evaluated for tin whisker mitigation prior to implementation.

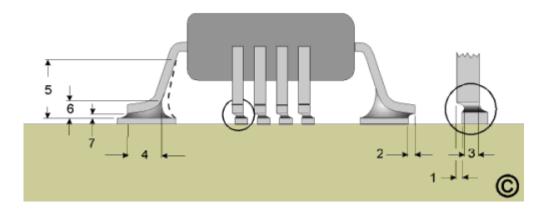
Due to the need to completely control the rates of immersion and emersion of the terminations and the dwell times in and between each process step, only Robotic Hot Solder Dip is addressed in this standard. Semi-automatic or purely manual solder dipping are processes that may not be capable of completely controlling the rates of immersion and emersion of the terminations and only providing an approximate dwell dipping time (time of total immersion to the required depth) in the solder bath. Greater variation in the process may cause a higher chance of damage, including latent reliability problems. At this time, it is felt that manual dipping, the types of piece parts that can be manually dipped successfully, and the controls needed on a manual dip process are not well enough understood to be included in an industry standard. Note that the manual dipping required for full finish replacement is different than manual dipping currently practiced for meeting solderability requirements because of the increased need of 100% coverage all the way to the body to prevent whisker growth.

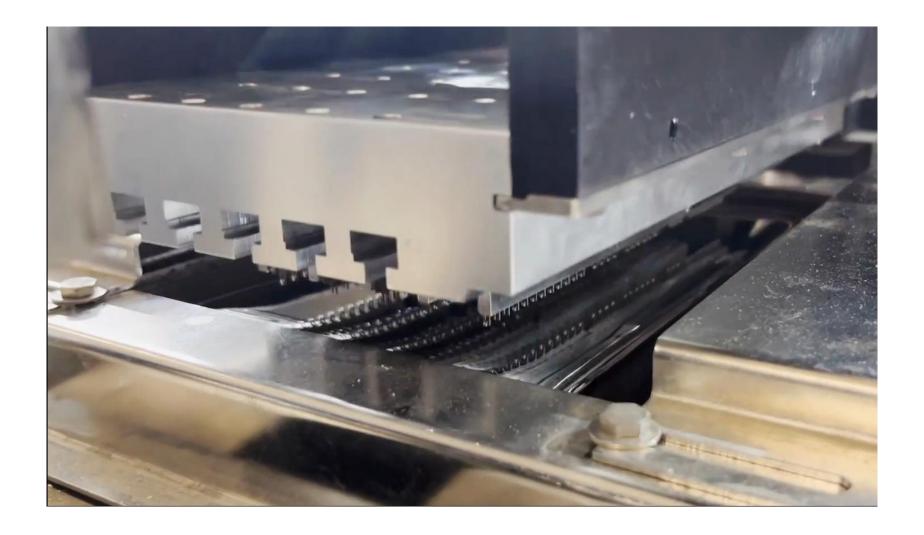
Certain piece-part package styles may not lend themselves to robotic hot solder dipping and may require the use of a soldering iron, over-plating, or other methods to coat the termination. It is expected that some of the general requirements and testing requirements of this standard would apply to these operations. However, these methods have not been fully reviewed at this time. The application of aspects of this standard to other material replacement methods is considered to be

QFP / TSOP and other leaded devices




Small Chip Components – Hand dipped




Small Chip Components – GEIA Standard

GEIA STD Tinning

Next Steps

We can now process all components from lead free to tin/lead in accordance with the GEIA standard.

Thank You

Tony Boswell / tony.boswell@retronix.com

Michel Bouvier

Tantalum & Polymer Product Marketing

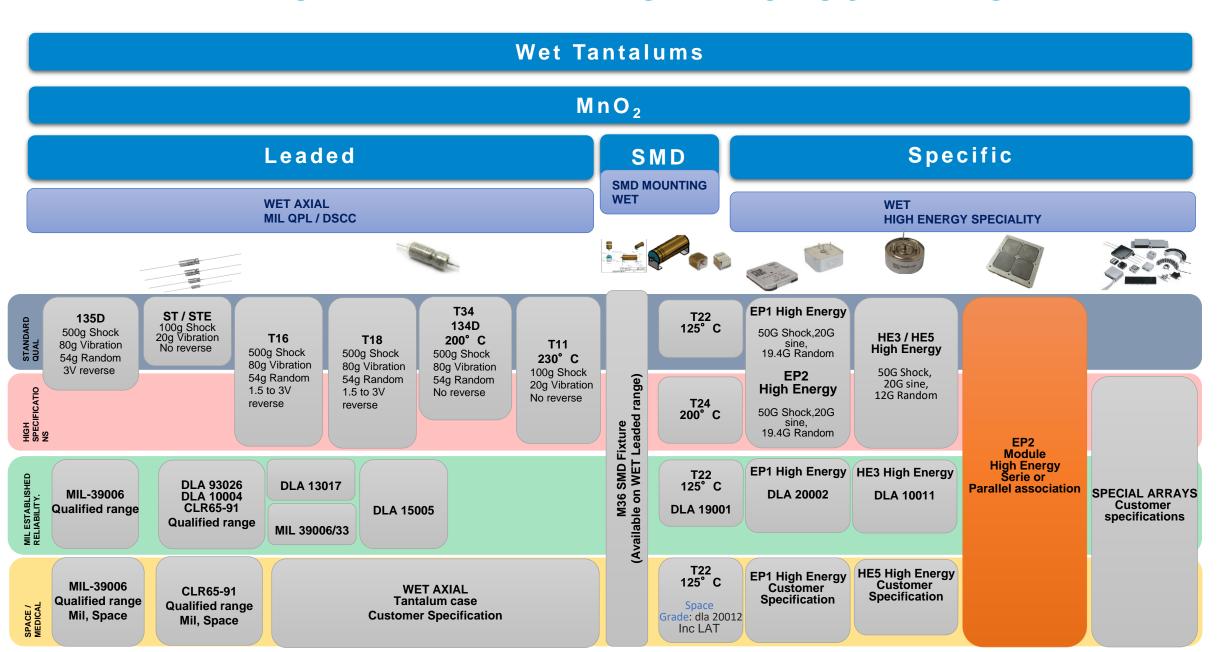
P +33 1 30 09 41 23

M +33 7 62 91 31 93

E michel.bouvier@vishay.com

Vishay Tantalum Division 60 Route de Sartrouville F-78230 Le Pecq, France

www.vishay.com



EP2 HIGH ENERGY & MODULES

VV

VISHAY WET TANTALUM PRODUCT LINES

VISHAY

TANTALUM WET HIGH ENERGY EP2

SERIES AND CARACTERISTICS

☐ EP2 High Energy High vibration & acceleration

- based on experience EP1, HE3 and HE5, Previously released products 2010
- Based on hermetically sealled design
- Shock tested: 50g / HF Vibration: 20g / Random Vibration: 20g
- Weight: EP2A 55-60g / EP2B 80-90g / EP2C 110-120g
- Dimensions 1.4 x 1.4 in.

□erformance Characteristics

- ✓ Ope. Temp: -55 °C to +125 °C
- ✓ Cap Range: 1100 μF 72000 μF
- ✓ Cap Tol: ± 10 %, ± 20 %
- ✓ Voltage Rating: 25 125 VDC
- ✓ Case A to D (1 to 4 anodes)

☐ Options:

- Studded design available to secure PCB fixation
- Spacer for flat mounting
- Universal base available for SMD configuration. available with study version as well.

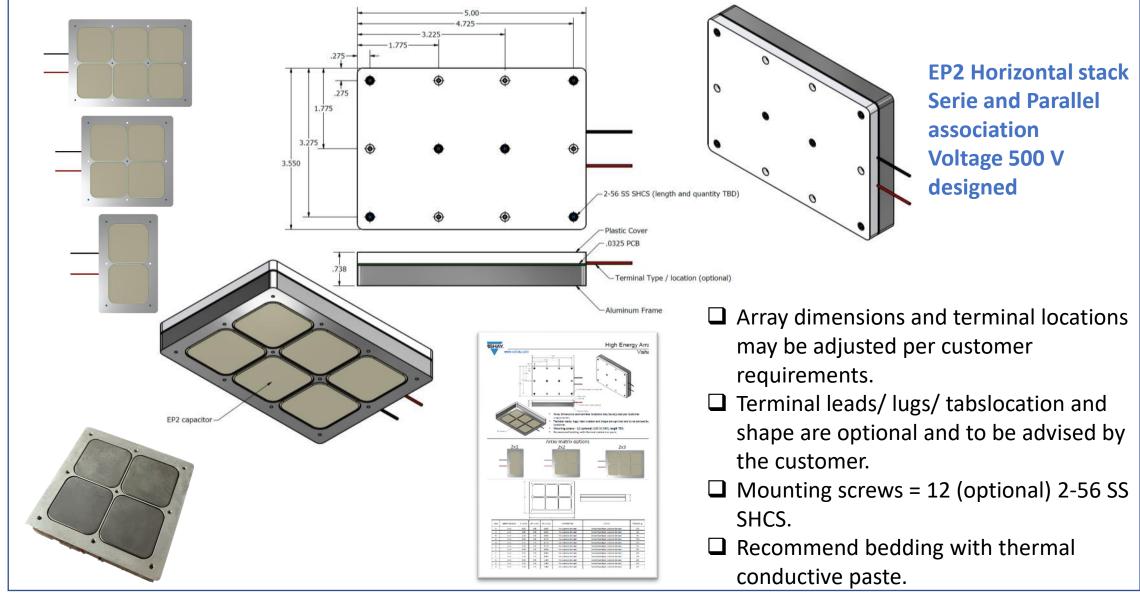
KEY FEATURES

- □ DLA 15010 qualified on key ratings
- ☐ High energy density (above 2 Joule/cc)
- No aging or reforming required
- High operation temperature. Stable parameter
- □ Electrical characteristics stability No wear out mechanism due to hermetic construction
 - Harsh Environment Resistant

μF	25 V	35 V	50 V	60 V	63 V	80 V	100 V	110 V	125 V
1500									EP2A (100
1900									EP1A (100) EP2A (100)
2000									EP1A (100) EP2A (100
2200								EP2A (85)	EP1A (110
2700									EP2B (45
3000							EP1A (65) / EP2A (65)		EP2B (45)
3300							EP1A (70)		
3600									EP2B (50) EP2C (25
3800									EP2B (50)
4000						EP1A (55) / EP2A (55)		EP2B (40)	
4200							EP2B (30)		
4400						EP1A (60)	EP2B (30)		
4500									EP2C (25
5300									EP2C (35
5600							EP2C (20)		EP2C (35
5800							EP2B (35)		
6000					EP1A (50) / EP2A (50)	EP28 (27)		EP2C (27)	
6300				EP2A (50)					
6600					EP1A (60)		EP2C (20)		
7000						EP2B (30)			EP2D (20)
7900							EP2C (25)		

υF	25 V	35 V	50 V	60 V	63 V	80 V	100 V	110 V	125 V
8000		-3.			-31	EP2B (30)		EP2D (20)	.20
9000						EP2B (30) / EP2C (18)	EP2C (25)		
9400				_	EP2B (25)				
10 500							EP2D (20)		
11 000					EP2B (25)				
12 000			EP1A (50) / EP2A (50)		EP2B (25)	EP2C (20)			
12 600				EP2B (25)					
13 000			EP1A (50) / EP2A (50)		EP2B (25)				
14 000					EP2C (17)	EP2C (20)			
15 000			EP1A (60)						
16 000						EP2D (15)			
17 000			EP2B (25)						
18 000					EP2C (20)				
19 000				EP2C (17)					
22 000		EP1A (40) / EP2A (40)	EP2B (25)						
23 000			EP2C (17)						
24 000			EP2B (27)		EP2D (12)				
25 000				EP2D (15)					
30 000	EP1A (30) / EP2A (30)								
32 000		EP2B (20)							
33 000			EP2C (17)						
34 000			EP2C (18)						
36 000		EP2B (22)							
37 000			EP2C (20)						
40 000		EP2B (22)							
44 000			EP2D (15)						
47 000		EP2C (15)							
48 000	EP2B (20)	EP2C (15)	EP2D (15)						
58 000		EP2C (17)							
70 000		EP2D (12)							
72 000	EP2C (15)								
96 000	EP2D (12)								

Ultra High Capacit	ybrid Capacitors, High Energy, ance, -55 °C to +125 °C Operation
	PEATURES 1-10/2 mans, very high capacitation image 1-14/2 mans, very high capacitation image 1-14/2 territors, however, and the control of t
	Note * This distance process information about parts that the 6s complete and 7 or parts that are not fourth complete exprais, parts with out of the terminations are not 6466 comple Photos are the optionation, "tokes in the distance to distance the optionation," tokes in the distance to distance.
LINKS TO ADDITIONAL RESOURCES	APPLICATIONS
	Network Autorea (military / space
THE	Automore military / space Shall for capacitor banks
PERFORMANCE CHARACTERISTICS	
Operating Temperature: -65 °C to +40 °C (to +105 °C with softage denote Coperature: T stemance of 100 °C; 45 °C x 20 °N standard - 10 °N sealable as quickle Contact marketing for availability of 10 °N tale	in the Standard Ratings tables. Life Teet: capacitions are capable of withstanding a 2000 in life teet.
PF2 C PF9 C C C C C C C C C	OF ACTION CODE TERMINATION STUDENTS
Service of parts to below. Service management of 10 % breams	A flower of the state of the st


DLA 15010

EP2B 22mF-50V EP2C 33mF-50V EP2C 19mF-60V EP2B 9.4mF-63V EP2C 14mF-63V EP2B 9F-80V EP2B 3mF-125V expending

© VISHAY INTERTECHNOLOGY, INC. ALL RIGHTS RESERVED

STANDARD MODULES EP2 WET TANTALUM

VISHAY

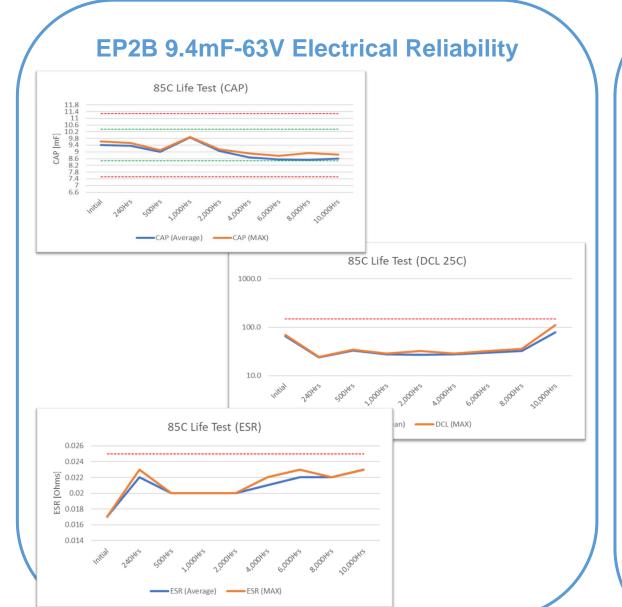
APPLICATION AND EXPERIENCE

Typical Space/Aerospace application

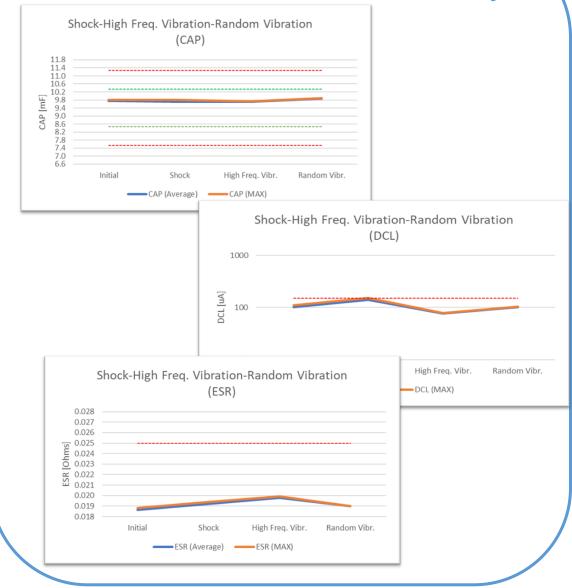
- ☐ Rocket Ignition / re-ignition
- ■Motor / actuators driving
- ☐ Backup of key equipment (Transponder, flight computer)
- ☐ Higher voltages possible by serie association (customer design or Vishay module) Electric thruster up to 2000v
- □GaN , SiC voltage increase requirement
- □ Laser driver (distance, communication)
- □SA Radar primary power supply pulse

Roadmap

D 6 mF / 125v case 4 anodes ESR down to 12 mOhms C 96 mF / 25v C 58mF / 35v – C 18 mF / 63v C 12 mF / 80v -


Trend and requirements

- ☐ lower ESR for higher Ripple Current and faster start up
- ☐ Improved thermal dissipation by lower ESR and thermal increase withstanding
- ☐ Shock & Vibration resistance increase
- ☐ Higher cap and Voltage


Thermal Management

EP2B 9400uF- 63V 25 mOhms 25°C	Normal ripple max below 75°C in continuous mode	limited ripple max stay below 125°C during pulse
At 20Hz:	6.53A	13.06A in 10min
At 50Hz:	7.76A	15.52A reach in 10 min

EP2 STABILITY & LIFETEST

EP2B 9.4mF-63V Mechanical Reliability



VISHAY

Dankie Gracias Спасибо Köszönjük Terima kasih Grazie Dziękujemy Dekojame Dakujeme Vielen Dank Paldies
Kiitos Täname teid 油油 感謝您 Obrigado Teşekkür Ederiz 감사합니다 Σας ευχαριστούμε Bedankt Děkujeme vám

ありがとうございます

Tack

ECLIPTIC DEFENCE AND SPACE (EDS)

COMPANY PRESENTATION

- Company overview
- Strategic objectives/ vision
- Company's laboratories
- Component & Subsystem-level capabilities
- High-Power SIW components for telecom satellite missions

COMPANY OVERVIEW

- Foundation Date: April 2020 (First Contracts in August 2021)
- Activities: Design, Manufacturing & Testing of RF & Microwave Components, Subsystems and Systems for Defence and Space platforms
- Core Technology Expertise: Radio Frequency & Microwave Technologies with a focus on complex Substrate Integrated Waveguide structures
- Team: Currently a team of 14 engineers with industrial expertise (RF Engineers, Electronic Engineers, Mechanical and PA/QA Specialist)
- Premises location: A 3-storey building (493 sq.m) in Nicosia housing our Design Offices, Prototyping Laboratories and Small-Scale manufacturing areas. Within 2025/2026, EDS will acquire additional manufacturing facilities to implement forecasted production needs.
- Space development projects won: 11 projects from the European Space Agency (ESA), 1 from the Cyprus Research and Innovation Foundation (IRF).
- Main Subcontractors/End-customers: Thales Alenia Space & Airbus are participating in the projects with product specifications.
- * All space developments can evolve into defence products with minor modifications

STRATEGIC OBJECTIVES/ VISION

- Establish a Large-Scale, state-of-the-art Development and Testing Infrastructure for RF & Microwave components, subsystems and systems.
- Become an integral part of the European/International LSI's space supply chain
- Build the manufacturing capacity to deliver on high-volume orders at the required reliability.
- Establish strong collaborations/ partnerships with European and global space organisations to undertake larger projects and further developments of ground-breaking RF technologies.

COMPANY'S LABORATORIES

- High RF Power Test Laboratory
- Low RF Power Electronics Test Laboratory
- Environmental Test Laboratory (ISO 7 Cleanroom)
- RF Electronics Processing and Inspection Laboratory
- EMC Test Laboratory
- Mechanical Inspection Laboratory
- General Electronics Testing Laboratory

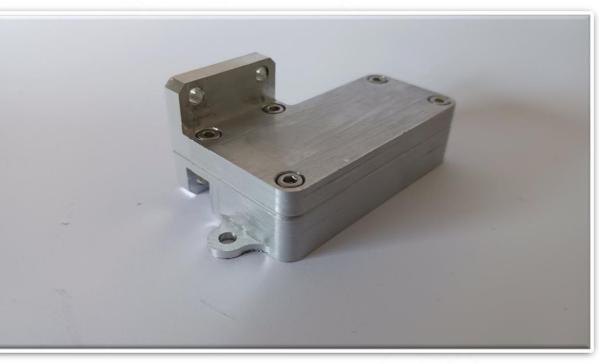
COMPONENT & SUBSYSTEM-LEVEL CAPABILITIES

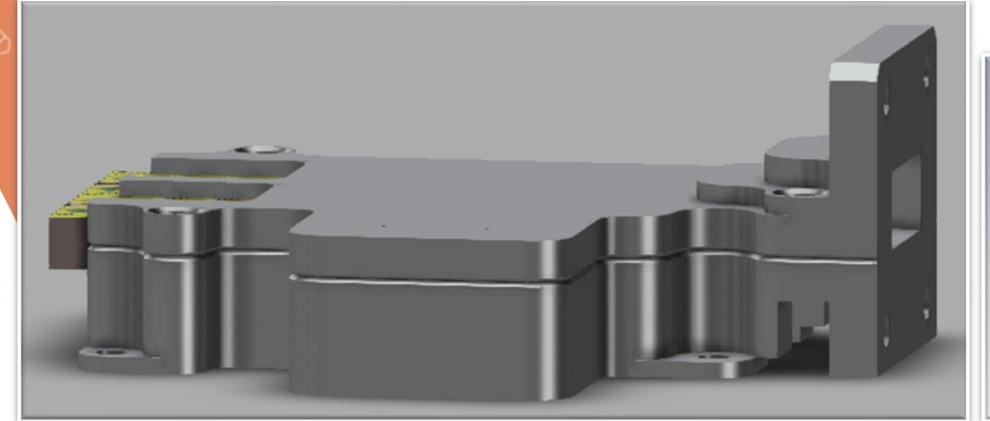
The design and manufacture of bespoke space-grade and defence-grade components and subsystems from UHF to Q-Band:

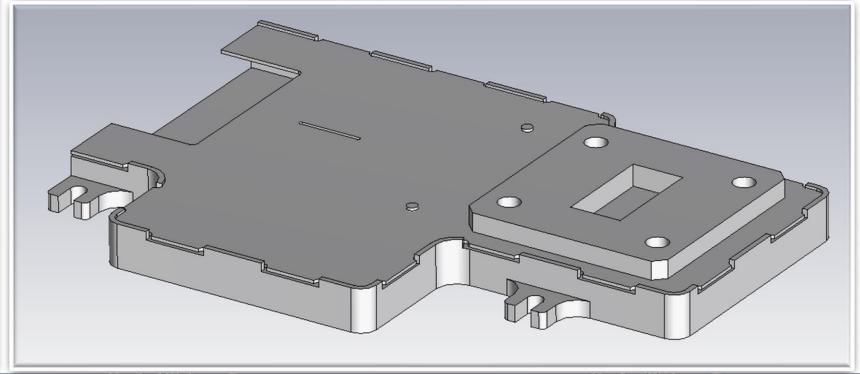
Low Power Active Components	Low Power Passive Components	High Power Planar Active Components	High Power Waveguide Passive Components	Subsystems
LNA's	Filters	High Power Amplifiers (GaN) modules	Isolators, Circulators	Receivers (Radar, Altimeter, Radiometer, Scatterometer)
Gain Blocks	Couplers	T/R multi-chip Modules	Couplers	Upconverters
Switches (PIN)	Attenuators		Filters	Synthesizers
Attenuators (PIN)	Antennas		High-Power Load terminations	Transmitters, SSPA's
Phase-shifters (PIN)	Combiners		Spatial Power Combiners	Input Multiplexers
Oscillators (DRO)	Dividers		Binary-type combiners	TT&C, PDT's
	Metamaterial implementations of		Attenuators	Analog dipainterener and Space Boundless technological capabilities in defence and sp

the

HIGH-POWER SIW-BASED COMPONENTS



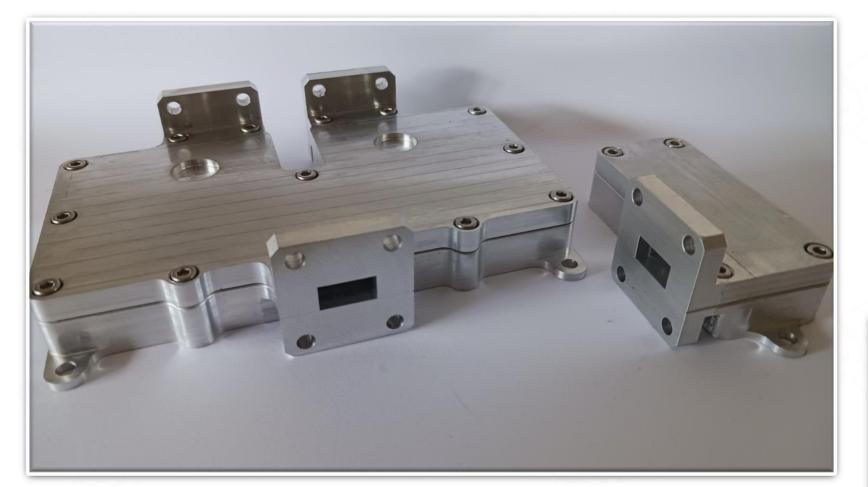

Powered by Ecliptic's


HYWAIS® technology

U-COMBS Ultra-Low-Los	s Combiners (Ka-Bar	nd) U-COM	IBS Ultra-Low-Loss	s Combiners (Ku-Band)
Insertion Loss	0.45	Inse	ertion Loss	0.45
Return Loss (all ports)	19 dB	Retu	ırn Loss (all ports)	20 dB
Input Port Isolation	19 dB	Input	Port Isolation	20 dB
Reverse Isolation	22 dB	Reve	rse Isolation	26 dB
Max Forward power	100 W CW	Max Fo	orward power	120 W CW

U-COMBS Units will undergo ESCC qualification in 2025/2026

HIGH-POWER SIW-BASED COMPONENTS



Powered by Ecliptic's

HYWAI5[®]

technology

INKAIDUS IsoCoi	mbiners (Ka-Band)
Insertion Loss	0.6 dB
Return Loss (all ports)	18 dB
Input Port Isolation	24 dB
Reverse Isolation	22dB
Max Forward power	120 W CW

INKAIDUS Units will

undergo ESCC

HIGH-POWER SIW-BASED COMPONENTS

Powered by Ecliptic's

HYWAI5[®]

Technology.

FINISST IsoFilte	rs (Ka-Band)
Insertion Loss	0.6 dB
Return Loss (all ports)	19 dB
Out-of-band rejection	20 dB
Isolation	22 dB
Max Forward power	90 W CW

QuBISS Iso	lators (Q-Band))
Insertion Loss	0.3 dB	
Return Loss (all ports)	22 dB	
Isolation	22 dB	
Max Forward power	40 W CW	

ECLIPTIC DEFENCE AND SPACE

MAIN CONTACTS

Dr. Andreas Papanastasiou
Technical Director
andreas.papanastasiou@ecliptic-ds.com

Maria Konstantinou

Business Development Director

maria.konstantinou@ecliptic-ds.com

Ecliptic Defence and Space Ltd.

www.ecliptic-ds.com

14 Kozanis street,

2221, Latsia

Nicosia/ Cyprus

BizLink ESCC Cables and custom Solutions for Space applications

Friesoythe

Markets and Offerings

Together we will form a leading global interconnect company

BizLink (2021)

Sales ~ € 916 m

Employees ~ 11,200

IN BG (2021)

Sales € 544 m

Markets

Employees ~ 3.400

Markets

Industrial

IT DataComm

Automotive

Sites: 26 worldwide

customers in Asia

and USA

Offerings

Cable manufacturing and cable systems for many requirements / standards

Factory Automation

Machinery & Sensors

Marine

Space

Telecommunication Systems

Silicone

Sites: in 10 countries

Main footprint and customers in Europe, **USA** and China

Offerings

Cable manufacturing, cable systems, and services for standard and tailor-made requirements

BizLink+ IN BG

- ✓ Truly global market presence – strengthening activities and leveraging potential in Europe, North America and Asia
- ✓ Complementary global production network, technology, and product portfolio
- ✓ Solid financial power
- ✓ Innovation driver

Electrical Appliacne

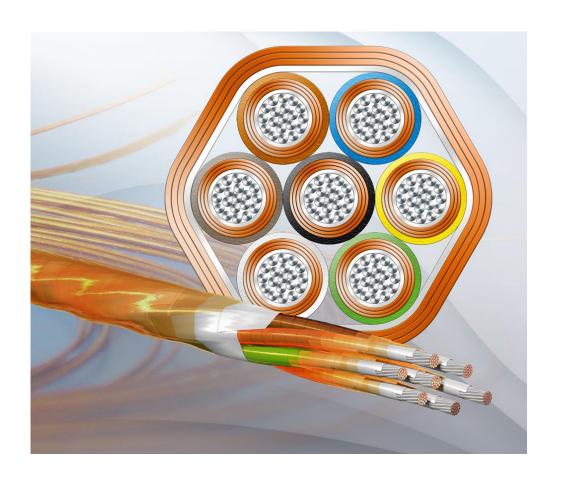
BizLink Special Cables Germany

BizLink

Business Units:

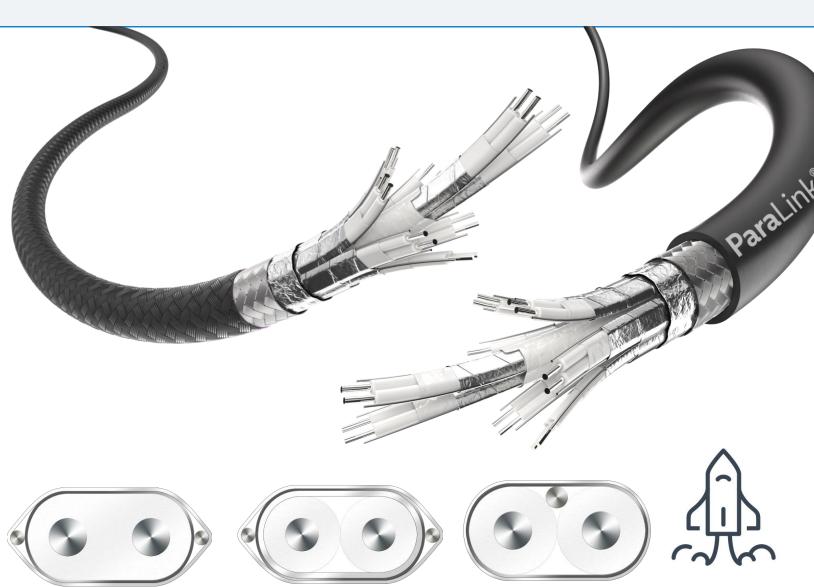
Automation & Drives

Healthcare



High-Performance Computing (HPC)

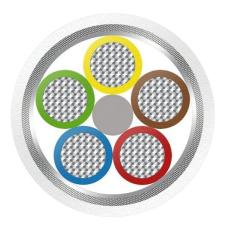
ESCC space grade cables

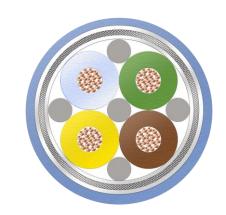

- In accordance with ESCC 3901-018,-019 or -021 specifications
- Lightweight and thin
- Highly flexible
- Low-outgassing material use
- Resistant to extreme temperature ranges from -200 to +200 °C
- Vibration and shock resistant
- Voltage rating: up to 600 V

ParaLink® high speed data cables

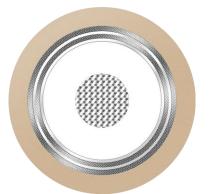
BizLink

- For transmission of signals with speeds up to 224 Gbit/s per lane (PAM 4). Suck-out free till 60GHz.
- Parallel pairs (Twinax), separately shielded
- Various construction options, e.g.
 - AWG sizes 24 to 34
 - Miniaturization line (AWG 34 to 38)
 - Number of pairs 1 to 24
 - **Hybrid solutions**
 - Space suitable



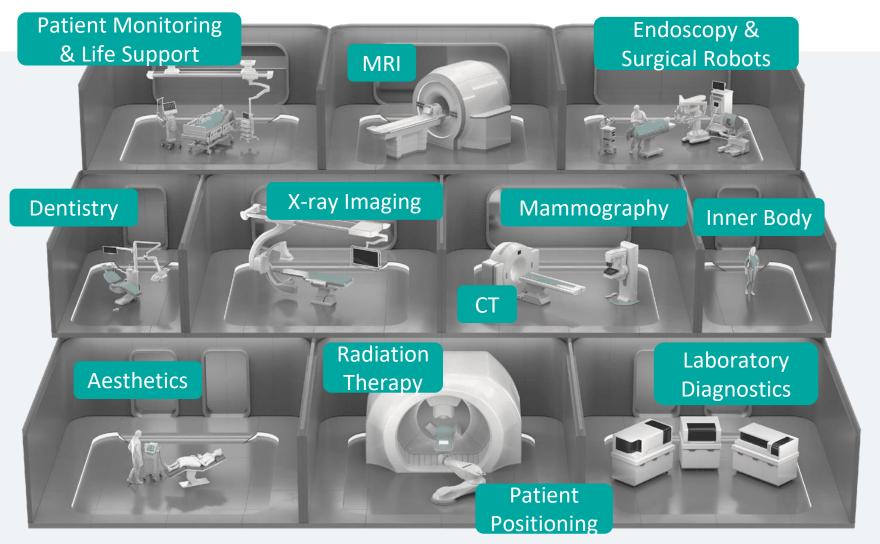

Space cables, ground and flight harnesses

Custom space cables


Onboard Data Network cables

- Build-to-print services and module assembly for space applications
- Lightweight and small
- Low-outgassing
- Resistant to extreme temperature ranges from -200 to +200 °C
- Vibration and shock resistant
- Voltage rating: up to 600 V
- Insulations of PFA, FEP, Polyimide, PTFE, ETFE possible

 50Ω , 75 Ω Standard and customized Coax solutions suitable for space applications



BizLink Healthcare solutions

Potentially candidates for Space applications in our Healthcare solutions!

BizLink Healthcare solutions

BizLink

- for moderate mechanical stress installation inside device
- UL-Style accordance typically included

Ethernet patch cable

Fiber optic patch cable

- for high & diverse mechanical stress installation inside or next to device
- UL-Style accordance & disinfectibility typically included

Crush-resistant footswitch cable (also trailable)

Stressable X-ray cable with copper alloy

- for fix & flexible installation with increased hygienic requirements
- disposable or biocompatibility compliance included

Tensile strong handswitch cable

Extra-thin body coil cable

Reusable ECG trunk cable

Whatever is needed.

Challenge us!

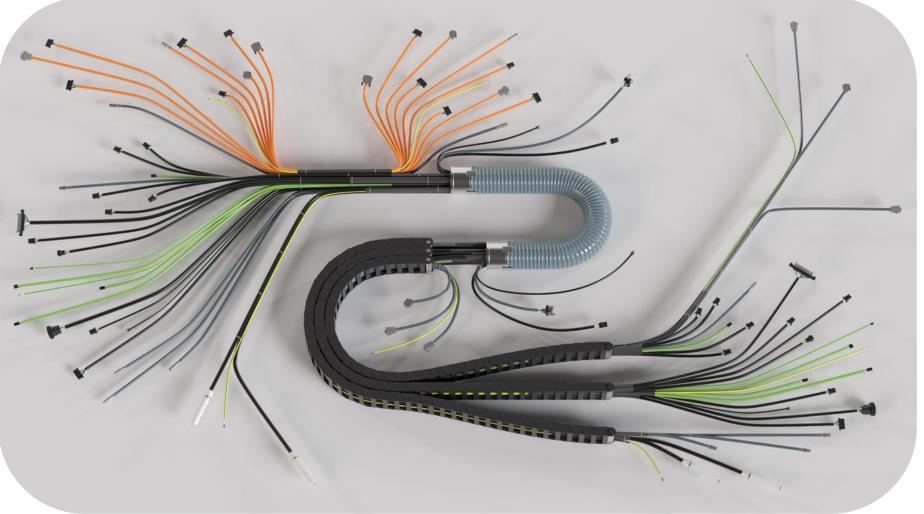
'All-in-one' Carm custom cable

Vision system breakout cable

X-ray cable system solutions

BizLink

Fiber optic cables (POF, PCF & silica)



Cat 5,6 & 7 **Ethernet cables**

Coaxial cables

Grounding cables

Optional electronic unit integration

Optional drag-chain unit integration

Optional switchboard unit integration

Optional custom Carm cable integration

etc...

Your contact Jogli Maldonado

Job title **Product Engineer**

BizLink Special Cables Germany GmbH Address

Eschstrasse 1

26169 Friesoythe

Germany

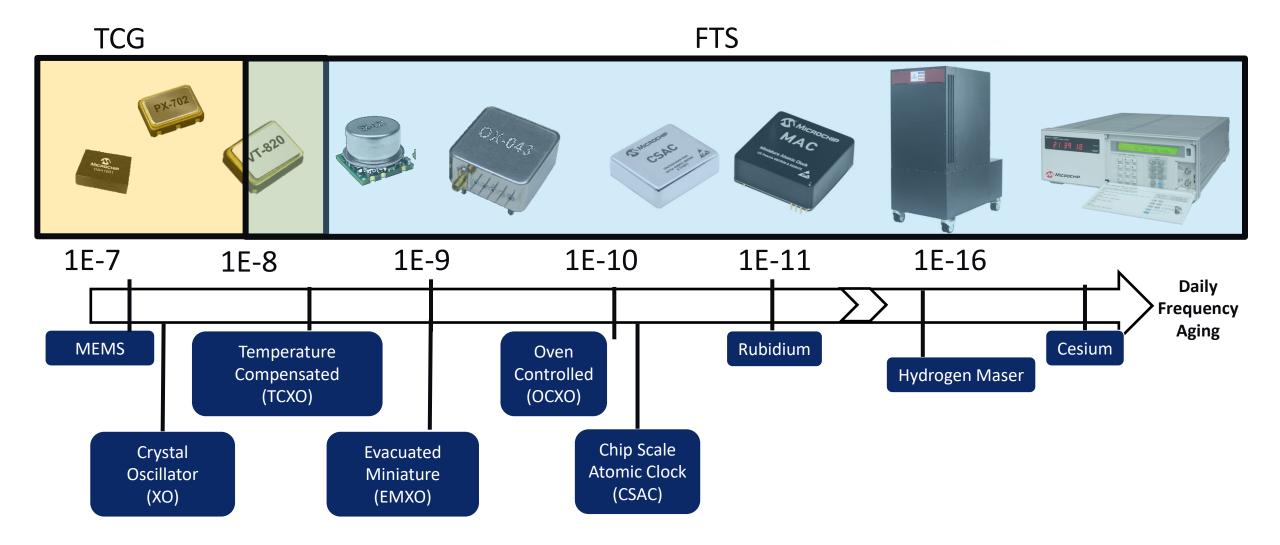
jogli_maldonado@bizlinktech.com E-mail

All rights are retained by BizLink, Inc. and affiliated companies

Please note that all text, images, graphics and other content in this document is protected by copyright. The transmission, reproduction, editing or other use of content is not permitted. This includes extracts thereof. All rights reserved.

Please get in touch with your point of contact at BizLink if you would like to use parts of this document. We would be happy to check whether we can grant you the appropriate usage rights.

Microchip Frequency Technology GmbH Neckarbischofsheim (NBH) Overview / Product Portfolio


A Leading Provider of Smart, Connected and Secure Embedded Control Solutions

Oliver Terasa

Oct-2024

MCHP Frequency Control Products

Microchip in Europe

>2700 employees

Job Functions

- Research & Development
- Procurement
- Engineering
- Manufacturing
- Quality
- Test
- Sales Support
- Technical Support

Key Markets

- Aerospace & Defense
- Industrial
- Automotive
- Communications
- Consumer Appliance
- Data Center & Computing

Vectron Oscillator Products Factories

Mount Holly Springs (MHS), US

- Hybrid & Discrete Manufacturing
- Crystal Manufacturing

Neckarbischofsheim (NBH), Germany

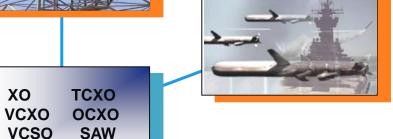
- Hybrid & Discrete Manufacturing
- Crystal Manufacturing

Aerospace & Defense Segment

Applications

Radar

- Low g-sensitivity
- · Low Phase Noise


Avionics

- High frequency
- Low g-sensitivity
- · Low Phase Noise

Satellite Controls

GPS Guided Munitions

- Low g-sensitivity
- · Fast warm up

Tactical Encrypted Radio

- · Low power consumption
- Small size
- Low Phase Noise

Command And Control

Filter

- · Low Phase Noise /Low Jitter
- · High frequency
- Low aging

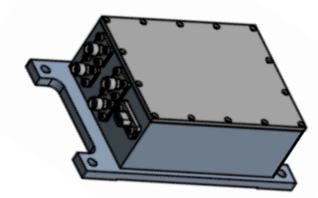
XO

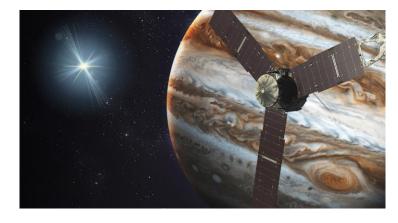
Crystal

Aerospace & Defense Product Roadmap

Targeted Features

- Low g-sensitivity
 - OCXO, TCXO, VCXO, VCSO, CW-Crystals
- Low Phase Noise
 - OCXO, TCXO, VCXO, CW-Crystals
- Low Jitter
 - VCSO
- Vibration hardened
 - OCXO
- High/Multi Frequency Output
 - OCXO, VCSO, VCXO, PXO
- Low Power / High Performance
 - TCXO, MCXO
- Holdover / Aging / High stability
 - OCXO



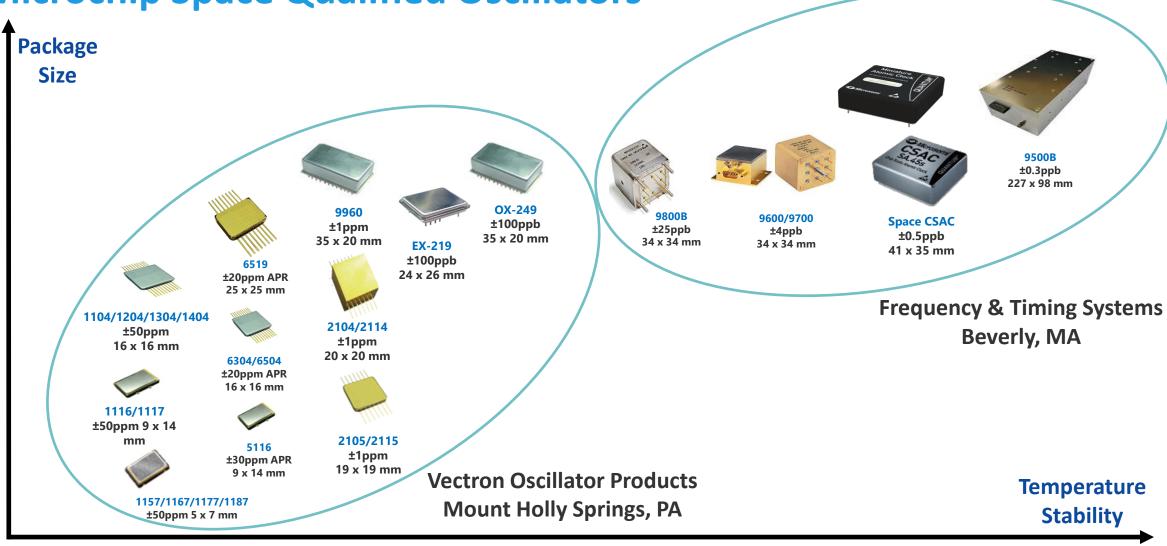


Extensive Flight Heritage

Microchip frequency control devices on-board.....

- Founded as McCoy Electronics in Mount Holly Springs, PA in the 1950's
- First successful US space mission in 1958
- First Lunar Landing in 1969
- Furthest manmade object from Earth Voyager 1 launched in 1977
 - ✓ 24 billion kilometers
 - √ 47 years of operation
- Fly-by of every planet in our solar system
- Spacecraft on surface of Moon, Venus, Mars, and Titan
- Spacecraft intentionally impacted Mercury, Jupiter, Saturn and Sun
- Deep Space, GEO, LEO, Telescopes, Landers, Rovers, Manned, Launch Vehicles
- Occupying eleven sockets on NASA's Perseverance rover
- Primary supplier of clock oscillators for JPL's upcoming Europa mission

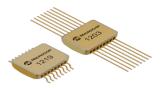
1960s	Apollo	Gemini	Pioneer	Intelsat
1970s	GPS	Viking	Nimbus	Voyager
1980s	Galileo	Milstar	Magellan	Space Shuttle
1990s	Centaur	Cassini-Huygens	Hubble Telescope	ISS
2000s	Mars Spirit	Mars Odyssey	New Horizons	Global Star II
2010 s	Orion	GPS III	GOES-R	Juno
2020s	JWST	Perseverance	Vulcan Centaur	Europa (planned)



Flight Heritage of Microchip Crystals/Oscillators

Microchip Space Qualified Oscillators

LVDS Clocks – Quad Complementary Output


DOC203679, Rev J (100 krad) DOC206903, Rev F (300 krad)

- Popular for driving RT FPGAs (RT PolarFire, RTG4, VIRTEX 4QV/5QV, et al)
- Quad complementary output pairs available from 12 MHz to 200 MHz
- Industry standard 16x16mm 20FP enclosure
- Model numbers include:
 - 1216 100 krad TID, Straight Lead
 - 1280 100 krad TID, Lead Formed
 - 1616 300 krad TID, Straight Lead
 - **1680 300** krad TID, Lead Formed
- Uses 5962R/F microcircuits and high FT bipolar transistors possessing wafer lot specific RLAT
- Output buffer rated to 120 MeV-cm²/mg (SEL) and 67 MeV-cm²/mg (SET/SEU)
- Bipolar transistor verified by separate testing not to diminish SET threshold of LVDS microcircuits

Characterized Reference Clocks for a Total Solution

Microchip Platform	Product Type	Timing Application Note
RTG4	Rad Hard FPGA	AN3216
VSC854(x)RT	Rad Tolerant Ethernet PHY	AN3503
SAMRH71FA20	Rad Hard Microcontroller	AN3520 Revised
ATmegaS64M1	Rad Tolerant Microcontroller	AN3567
ATmegaS128	Rad Tolerant Microcontroller	AN3568
SAM3X8ERT	Rad Tolerant Microcontroller	AN3659 Revised
SAMV71Q2RT	Rad Tolerant Microcontroller	AN3660 Revised
RT PolarFire	Rad Hard FPGA	AN5225 NEW
VSC8574RT	Rad Tolerant Ethernet PHY	In Process
SAMD21RT	Rad Tolerant Microcontroller	In Process
HPSC	Rad Hard FPGA	Planned

Solutions from COTS to Traditional Space

TID ≥ 100krad Tested Traditional Space

RHBD - Radiation Hardened By Design **SEE/DDD Characterized** Quality **Cubesat** TID < 50krad By Design **SEL Verified** L-Series RT-Radiation Tolerant Ground **Based Systems** LE0 Low **Earth** MEO/GEO/Deep **Orbit Space Applications Extended Temp, Rugged Radiation Performance**

Grade

L-Series – LEO Quartz Oscillator Family

LX-703 - xo

- 1.25MHz 135MHz CMOS
- ≤ 100 ppm Temp Stability
- 5x7mm SMT Package

LO-200 - ocxo

- 10MHz-20MHz SINE
- ≤ 20 ppb Temp Stability
- 1" x 1"

LT-400 - TCXO

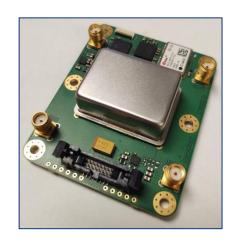
- 20MHz 160MHz SINE
- ≤ 5 ppm Temp Stability
- 4 Pin DIP

LO-201 - ocxo

- 100MHz-120MHz SINE
- ≤ 200 ppb Temp Stability
- 1" x 1"

LT-802 - TCXO (Q1-2025)

- 10 to 50MHz
- ±280ppb (-40/105°C)
- 5x3.2mm SMT Package


LO-202 - ocxo

- 20MHz-35MHz SINE
- ≤ 50 ppb Temp Stability
- 1" x 1"

LM-010 - PPS Disciplined Oscillator (Q4-2024)

- 12 Hour Holdover < 4 uS
- 24 Hour Holdover < 8 uS
- < 5ppb Temp Stability

Thank You!

